WESTERN RESOURCE ADEQUACY PROGRAM Public Webinar

JANUARY 26, 2022 1-2:30 PM PT

AGENDA

- » WRAP Update
- » Load Forecasting
- » Solar Accreditation
- » Wind Accreditation
- » Wrap up

date casting editation

WRAP UPDATE

- Published Governance version 4 on Jan 13th $\boldsymbol{\succ}$ Extensive process with states facilitated by WIEB Incorporated feedback from 2B Detailed Design Webinar on Governance scheduled for Friday Feb 4th 12-3pm PT
- On track to file with FERC in Spring **>>**
- Standing up Program Review Committee \rightarrow and Nominating Committee

Task Forces working through outstanding design $\boldsymbol{\succ}$ topics from Phase 2B

WRAP UPDATE

LOAD FORECASTING

SOLAR ACCREDITATION

WIND CREDITATION

WRAP UP

Load Forecasting Methodology Background

- Critical that quantified elements are consistent and **>>** objective
- In 2B: Load forecasting to be determined and \rightarrow submitted by each Participant, based on their own load forecasting methodology
- Load forecasts are used: **>>**
 - As inputs for the LOLE and ELCC studies
 - To establish the load term in the compliance metric
- Not a replacement for existing IRP or infrastructure $\boldsymbol{>}$ planning processes

LOAD FORECASTING CURRENT STATE

- Task force considering approach for non-binding seasons
- Anticipate Program Review Committee will work on proposal for binding seasons

ELCC STUDY PROCESS **REVIEW (FROM 2B)**

"Pure Capacity 1"

Calculate "pure capacity(+/-)" added to benchmark system to achieve 1-in-10 LOLE

The benchmark system is defined as load supplied by all > conventional resources, storage hydro generation and VERS excluding the VER of interest

"Pure Capacity 2"

Calculate "pure capacity(+/-)" added full system (all resources included) to achieve 1-in-10 LOLE

ELCC of VER of interest = "Pure Capacity 1" – "Pure Capacity 2"

ZONAL ELCC APPROACH **REVIEW (FROM 2B)**

- ELCC will be calculated on a zonal basis
- To ensure that over-accreditation of VERs does not occur, zonal ELCC will be scaled to RA footprint ELCC

A study of four wind zones reveals the following capacity values for wind in each zone:				
Zone 1	Zone 2	Zone 3	Zone 4	Total
1,000 MW	800 MW	700 MW	1,000 MW	3,500 MW
A study of the region reveals the following capacity value for the region's wind:				
Regional wind = 3,200 MW				
The zones will be recalculated as follows:				
Zone 1	Zone 2	Zone 3	Zone 4	Total
1,000 * (3,200/3,500)	800 * (3,200/3,500)	700 * (3,200/3,500)	1,000 * (3,200/3,500)	
914 MW	732 MW	640 MW	914 MW	3,200 MW

ADDITIONAL ELCC CONSIDERATIONS

How to handle 'next-in' resource

- Study incremental additions of wind and > solar resources in each zone (2,000, 4,000 and 6,000 MWs)
- > PO provides an ELCC curve to determine future capacity values for new resources dependent upon the penetration of resources in that zone
- Appropriately accounting for scaling from: Seasonal, footprint-wide ELCC by resource (to) -> Seasonal, zonal ELCC by resource (to) -> Monthly, zonal ELCC by resource ->

SOLAR ACCREDITATION

- Following proposal was presented to RA **>>** Participant Committee (RAPC) in early December
- Robust discussion on the merits of two **>>** zones (North and South)
 - Trade-offs: modeling / computation time and resources that occur with a zone-heavy approach
 - East/West diversity considered

WRAP UPDATE

WRAP UP

SOLAR ACCREDITATION PROPOSAL

The WRAP footprint will be split into two zones for the purposes of modeling Solar resources in the ELCC study

- Zone 1 North
 - Washington, Oregon, Idaho, Montana, Wyoming >
- Zone 2 South
 - California, Nevada, Utah, Arizona >
- Allocation of ELCC within each zone based on average monthly output on the capacity critical hours (CCHs) (real or synthesized output)
 - Anticipated to capture the time zone and geographic (East/West) diversity of resources

Resource ELCC = Montly ELCC MW * Resource average hourly net power output on top 5% of net load hours(CCH) Zone total average hourly net power output on top 5% of net load hours (CCH)

Analysis of historical average hourly net power output will utilize the following data:

- 3 years of data, if available
 - > No less than 3 years will be utilized if 3 years of data is not available, resource will receive class ELCC % * nameplate*
- Allocation of zonal ELCC to individual resource may be adjusted as actual production data is accumulated

*See exception for new / repowered resources

WRAP UPDATE LOAD FORECASTING SOLAR

ACCREDITATION

WIND CREDITATION

WRAP UP

 \rightarrow

Solar Degradation

Degradation approximation of 0.5% per year will be applied \rightarrow to the last year's historical performance

> **Example**: In year 2021, PO would be modeling for 2023, using historical information from 2020

Anticipate a 1.5% degradation from the 2020 historical performance for 2023, 2% for 2024, etc.

New and Repowered Facilities

Participant (or resource owner) will be responsible for **>>** synthesizing a 3-year forecasted output, using:

Manufacturer's engineering or performance data

Actual weather (preferably from on-site, but not from outside of 50-mile) radius) and/or

Historical performance of similar resources within a 50-mile radius

As actual data is accrued, it will replace synthesized data as available

WRAP UPDATE LOAD FORECASTING SOLAR ACCREDITATION WIND ACCREDITATION

WRAP UP

WIND ACCREDITATION Background

- Mapped wind installations by county provided **>>** insight into how footprint's wind is clustered
- Compared publicly available wind data for various **>>** regions to evaluate appropriateness of a grouping based on average weather conditions
- Decision was made to prioritize grouping by wind **>>** penetration in a geographic area
- Initial zones not intended to be static for the remainder **>>** of the program – ELCC modeling is completed each year; wind concentration will be re-evaluated for appropriateness

14 NWPP

1.0

2.0

4.0

3.0

WRAP UPDATE LOAD FORECASTING SOLAR ACCREDITATION WIND ACCREDITATION WRAP UP

Recommended Wind Zones:

- 1. Columbia Gorge (Southern Washington / Northern Oregon)
- 2. All 'other' US installed wind (everything but Columbia Gorge, Montana, Wyoming)
- 3. Montana
- 4. Wyoming
- 5. British Columbia

Resource ELCC = Montly ELCC MW * Resource average hourly net power output on top 5% of net load hours(CCH) Zone total average hourly net power output on top 5% of net load hours (CCH)

Analysis of historical average hourly net power output will utilize the following data:

- 3 years of data, if available
 - No less than 3 years will be utilized if 3 years of data is not available, resource will receive class ELCC % * nameplate*
- Allocation of zonal ELCC to individual resource may be adjusted as actual production data is accumulated

*See exception for new / repowered resources

WRAP UPDATE LOAD FORECASTING SOLAR ACCREDITATION WIND ACCREDITATION WRAPUP

New and Repowered Facilities

Participant (or resource owner) will be responsible for \rightarrow synthesizing a 3-year forecasted output, using:

Manufacturer's engineering or performance data

Actual weather (preferably from on-site, but not from outside of 50mile radius) and/or

Historical performance of similar resources within a 50-mile radius

As actual data is accrued, it will replace synthesized **>>** data as available

WRAP UPDATE LOAD FORECASTING SOLAR ACCREDITATION

WIND ACCREDITATION

WRAP UP

 $\boldsymbol{\succ}$

WRAP UP

- » Upcoming webinars to discuss design updates as they're approved by RAPC
 - Governance webinar Friday Feb 4th 12-3pm PT

Register for the governance webinar here: https://www.nwpp.org/events/118

cuss design ed by RAPC ay Feb 4th 12-

HANK YOU CONTACT US AT WRAP@NWPP.ORG

